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Reversible computation is briefly reviewed, utilizing a refined version of the 
Bcnnett-Fredkin-Turing machine, invoked in an earlier paper. A dissipationless 
classical version of this machine, which has no internal friction, and where the 
computational velocity is determined by the initial kinetic energy, is also de- 
scribed. Such a machine requires perfect parts and also requires the unrealistic 
assumption that the many extraneous degrees of freedom, which contribute to 
the physical structure, do not couple to the information-bearing degrees of 
freedom, and thus cause no friclion. Quantum mechanical computation is 
discussed at two levels. First of all we deplore the assertion, repeatedly found in 
the literature, that the uncertainty principle, A EAt  ~ h, with At equated to a 
switching time, yields any information about energy dissipatlon. Similarly we 
point out that computation is not an iterated transmission and receiving process, 
and that considerations, which avoid the uncertainty principle, and instead use 
quantum mechanical channel capacity considerations, are equally unfounded. At 
a more constructive level we ask whether there is a quantum mechanical version 
of the dissipationless computer. Benioff has proposed one possible answer. 
Quantum mechanical versions of dissipationless computers may suffer from the 
problems found in electron transport in disordered one-dimensional periodic 
potentials: The buildup of internal reflections may give a transmission coeffi- 
cient, through the whole computation, which decreases exponentially with the 
length of the computation. 

1. I N T R O D U C T I O N  

I n f o r m a t i o n  in c o m p u t e r s ,  in  b io log i ca l  sys t ems ,  o r  o n  p a p e r ,  is inev i t a -  

b ly  t ied  to p h y s i c a l  deg r ee s  of  f r e e d o m ,  a n d  is t h u s  s u b j e c t  to  p h y s i c a l  laws,  

T h e  c lass ica l  m a t h e m a t i c a l  v i e w p o i n t ,  u n d e r  w h i c h  we all h a v e  b e e n  

e d u c a t e d ,  p r e s u m e s  t h a t  a n  u n l i m i t e d  s e q u e n c e  of  success ive  o p e r a t i o n s ,  all 

g u a r a n t e e d  to b e  f ree  of  e r ro r ,  is ava i l ab le .  I t  is fa r  f r o m  c lea r  t h a t  the  real  

u n i v e r s e  p e r m i t s  this .  M y  o w n  w o r k  ( L a n d a u e r ,  1961, 1967, 1976a;  L a n d a u e r  
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and Woo, 1973) on the fundamental physical limitations of the computa- 
tional process is motivated, in part, by the attempt to provide a proper 
physical basis for mathematics, a viewpoint that has also been emphasized 
by Bremermann (1977), during the same two decades. The attempt to 
understand minimal energy demands and maximum immunity to thermal 
noise, for a computer subject to classical behavior, seems to be in a fairly 
settled state (Bennett, 1973; 1982; Fredkin and Toffoli, 1982; Landauer, 
1976a, 1981). The corresponding quantum mechanical analysis is still miss- 
ing. The literature, however, contains repeated remarks about quantum 
mechanical computer limitations. Here we argue that these" are largely in 
error. 

Some authors cite the uncertainty principle AEA~---h and, with vary- 
ing degrees of certainty, imply that if A7 represents a switching time, then 
AE must represent an energy dissipation. This is sometimes presented as an 
obvious and incidental fact, without even an argument, in papers largely 
addressed to other matters. We can cite only a sampling of this somewhat 
varied literature (Bate, 1978; Cottey, 1978; Keyes, 1975; Ligomenides, 1967: 
Mead, 1980; Mundici, 1981; Stein, 1977, 1978: Triebwasser, 1974). Only 
Keyes' (1975) discussion is distinguished by the fact that it states "It is hard 
to demonstrate that the energy. . ,  must be irreversibly dissipated to heat," 
and is the only one of our citations to voice such a clear doubt. The use of 
the uncertainty principle can be answered at two levels. First of all A E, in 
the tmcertainty principle, represents a spread in energy measurements, and 
not a dissipation, and the burden is on those invoking that argument, to 
show that the spread leads to a dissipation. Additionally, however, a particle 
obeying the SchrtSdinger equation can pass a highly localized feature, in 
space, very quickly, and still be in an energy eigenstate. Only if we try to 
measure the time of occurrence of that passage does the uncertainty 
principle play a role. Thus rapid switching of a particular logic variable, in a 
long sequence of events, does not, in any obvious fashion, require a spread 
in energy. Finally if we do construct a wavepacket with a spread in energy, 
it can pass many successive points in its path with relatively well-defined 
timing. The succession of events does not require a cumulative growth in 
energy spread. All these remarks show that an uncritical application of the 
uncertainty principle is unwarranted. The reader will see, however, that we 
do not have a counterexample and cannot guarantee that the conclusions are 
incorrect. 

A second group of papers relies explicitly on quantum mechanical 
channel capacity theory. Starting with the pioneering papers of Gordon 
(1961) and Lasher ( 1961 ) quantum channel capacity theory has grown into a 
major industry (Harger, 1977; Helstrom, 1976; Yu, 1976). Papers by 
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Bledsoe (1961) and Levitin (1982) discuss computational energy losses on 
this basis, and are closely related to discussions by Bremermann (1962, 
1966, 1977). Bremermann finds the maximum rate of information transmis- 
sion, obtainable with a given amount of energy. As discussed elsewhere 
(Landauer and Woo, 1973) the maximum rate is obtained in a burst of 
energy release which is so short that the total amount of information 
transmitted is only about one bit. Bekenstein (1981) has provided an 
independent approach, yielding results similar to Bremmermann's. It is 
reasonable to invoke channel capacity limitations if the computational 
process repeatedly requires the transmission, receipt, and detection of 
signals. The fact, however, that classical computers are not necessarily 
restricted by classical channel capacity restrictions (Bennett, 1973: Landauer, 
1976a, 1981 ), can be taken as evidence that computation is not equivalent to 
a highly iterated signal transmission process. The fact that the application of 
channel capacity theory requires careful analysis of the physical receiving 
process can be demonstrated by a very elementary example: A massive roll 
of magnetic tape, with many bits, can be shot through space at almost 
relativistic velocity. The minimal energy dissipation that is required, how- 
ever, consists of at most a modest number of /,-T (and perhaps not even 
that), related to the control of the tape's orientation and center of gravity, 
and unrelated to its information content. Alternatively, we could receive a 
message in electromagnetic form and store it between reflecting mirrors, for 
eventual later controlled release. 

Some existing discussions of the quantum mechanical computational 
process defy the simple dichotomy established above. Likharev (1977) 
proposed a particular superconducting computational scheme which, sup- 
posedly, has no classical minimal energy limits at all, but does have 
quantum limits. We believe that Likharev's classical analysis is in error, and 
in contradiction to our own closely related earlier discussion (Keyes and 
Landauer, 1970), because Likharev neglected the back influence of logic 
stages on preceding stages. Likharev (1982) now agrees, and has provided a 
corrected analysis. He shows how time-modulated potential wells, cycled 
back and forth between a monostable state and a bistable state (Keyes and 
Landauer, 1970) can be used to build a reversible computer, very much like 
the Bennet t -Fredkin-Turing machine we will discuss in the next section. 
Likharev's computer thus becomes the first reversible computer model 
based on electrical devices. Benioff (1980) has a sophisticated quantum 
mechanical description of a Turing machine which goes far beyond the 
other quantum mechanical discussions we have cited, and anticipates much 
of what we will have to say. We will return, subsequently, to comment on 
Benioff's work. 
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In the following we shall first review how reversible computation, i.e., 
classical computation with arbitrarily small energy losses, can be accom- 
plished. We then go on to ask how such machinery must be modified to 
permit classical dissipationless computing, in machinery with no friction at 
all. Finally we go on to ask, but without providing clear answers, whether 
there are equivalent quantum mechanical procedures. 

Before proceeding to the details, motivated by the possibility of dissipa- 
tionless quantum mechanical computation, we must also ask, is it desirable? 
To answer that, from a more practical view than the rest of this paper, let us 
admit that while we question the unconditional validity of the A E A t  ~ h 

argument, we have little question that most practical schemes would, in fact, 
be characterized by such a limitation. In that case, to replace k T  by h / A t ,  

as a phase space measure, which characterizes minimal energy requirements 
at high speeds, seems unprofitable. It is, after all, the total amount of 
computation carried out, which usually counts, and the speed of the 
individual event is secondary, in most cases. Admittedly, here, we are 
implying that we can use parallel circuitry to offset slow components, and 
computer science has, to date, been able to do that to a surprisingly limited 
extent. In this somewhat more practical vein than the rest of this paper, we 
also add an additional observation. Bistable optical devices have, in recent 
years, become a very fashionable field of investigation (Smith, 1981). 
Unfortunately the proponents of optical bistability generally do not ask 
themselves how to incorporate their inventions into a total system. As 
explained elsewhere (Landauer, 1976b), such system considerations quickly 
rob optical schemes of their initial appeal. 

2. T H E  B E N N E T I ' - F R E D K I N - T U R I N G  MACHINE 

We shall briefly review, and then refine, the Bennet t -Fredkin-Tur ing 
(BFT) machine utilized in Landauer (1976a) to demonstrate that classical 
computation can be done with arbitrarily little energy dissipation, if carried 
out slowly enough. Landauer (1976a) also showed that the computation can 
be immune to errors resulting from thermal agitation. 

The basic logic element in the BFT machine is a Fredkin gate shown in 
Figure t, a logically reversible function, i.e., one which provides a one-to-one 
mapping, without loss of information. The Fredkin gate is, in fact, its own 
inverse function. Figure 2 shows a particular physical embodiment of this 
function for a computer in which information is carried by balls moving 
along pipes or other guiding machinery, and where information is denoted 
by the absence or presence of a ball. Landauer (1976a) describes how a 
complete Turing machine can be built out of such gates and some auxiliary 
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Fig. 1. Fredkin gate has three inputs and three outputs. The uppermost input is transmitted 
unchanged and controls whether the two lower tracks are also transmitted unchanged, or 
caused to cross over. This logic function loses no information and is its own inverse. (Fredkin's 
original version has uncrossed tracks when a "l '" is fed into the top channel. This difference is 

not consequential.) 

mechanisms of a closely related kind. A key point: All of the degrees of 
freedom of this computer are locked together, in particularly all the infor- 
mation carrying balls advance together. Thus we can be sure that the 
controlling ball along the upper channel in Fig. 1 arrives with the correct 
timing to control the motion of the balls along the lower controlled tracks. 
(The mechanism can, obviously, be designed to tolerate modest timing 
errors and therefore limited thermal fluctuations in the coupling linkage.) 
One possible coupling mechanism which locks the balls together is the comb 
structure described in the Appendix. Alternatively, of course, we can simply 
invent a formal Hamiltonian which keeps the particles synchronized. As a 
third alternative we can assume charged information-beating particles whose 
motion is paced through charges which are moved along the outer surfaces 
of the tubes which guide the information bearing particles. 

The springs, in Figure 2, are required to insure that the switch remains 
in its intended, uncrossed, position if there is no ball in the split pipe. The 
reliability of the computation depends on the probability of thermal errors, 
and thus on the energy required for an unintended spring compression. By 
choosing this spring energy large enough, we can obtain any desired 
immunity to thermal errors. The necessity to store spring energy, in a way 
which depends on the information manipulations, i.e., on how many balls 
are passing through springs in a given machine cycle is unappealing. We can 
eliminate this blemish by using complementary logic, in which all Fredkin 
gates have a redundant partner carrying out the same step, at the same time, 
but with the absence and presence of balls interchanged. In the complemen- 
tary device the tracks are crossed when there is no ball present in the sprit 
control pipe. The addition of the complementary gates leads to a predictable 
variation of stored energy, which is the same in each machine cycle, and 
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Fi R . 2. The ball moving along the top channel controls the gate and arrives at the split pipe, 
shown at the top, before the balls along the two bottom channels arrive at the "Switch Box." A 
ball entering the top split pipe pushes the two halves apart and. in doing so, does work against 
the springs This energy is, however, retrieved after the ball leaves the split pipe at the 
right-hand end. The springs exist to insure that the split pipe remains closed if a 0 signal enters. 
Tile split pipe is in turn coupled to the switch box by a hard linkage, which controls the 
internal structure in the switch box, giving the switching action shown in Fig. I. 

i ndependen t  of in fo rmat ion  content .  We  can then easily ba lance  out  the 
var ia t ion  in s tored energy by some other  mechanism,  which stores the 
energy dur ing  the remain ing  par t s  of the cycle, and the compu ta t i on  can 
p roceed  at cons tan t  s tored energy. 

We will assume that there is no static fr ict ion and that  the fr ic t ional  
forces are p ropo r t i ona l  to velocity. Thus,  if the c o m p u t a t i o n  is carr ied out  
slowly enough,  the energy losses, per  step, can be made  as small  as required.  
No te  that in the presence of a small  dr iving force the c o m p u t a t i o n  will be 
p r imar i ly  diffusive,  with a small  net drift .  This,  however,  const i tu tes  no 
p r ob l em since the mot ion  backwards  and forwards  is a long the same 
u n b r a n c h e d  one-d imens iona l  track, resul t ing from our  total  rel iance on 
reversible functions.  As stressed in the earl ier  discussion (Landauer ,  1976a) 
a number  of k T  must be d iss ipa ted  in the final step to insure that  the 
process  halts  there and does not  diffuse backwards  again from there. 

C o m p u t a t i o n  can now be visual ized as i l lus t ra ted in F igure  3. Different  
hor izonta l  rows co r re spond  to different  p rograms  or initial  condi t ions .  Each 
of the circles co r re sponds  to a given state for the tape and the Tur ing  
machine ,  and  the forward progress  of the c o m p u t a t i o n  consists  of mot ion  to 

the right. 
We have descr ibed only one of several reversible compute r s  that  have 

been invented.  The  others  have been l isted elsewhere (Landauer ,  1981), and 
are discussed in other  papers  at this conference  (Bennett ,  1982; F redk in  and 
Toffol i ,  1982; Likharev,  1982). One of these, p r o p o s e d  by Fredk in ,  is a 
machine  in which logic is accompl i shed  through the col l is ion of hard bi l l iard  
balls ,  guided by reflect ing walls. This p roposa l  is d is t inguished by  the fact 
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F i g .  3. The left-hand end of a horizontal chain represents the initial state, and forward 
computat ion represents motion to the right, through a sequence of states represented by 
successive circles. Different letters correspond to different initial states, i.e., different programs. 

that the information-bearing particles are the only moving entities. On the 
other hand, it requires perfectly placed parts, and perfect initial velocities, 
for the interacting particles. Furthermore, if we connect such a computer to 
an infinite memory, our machine has an infinite stored kinetic energy. 

As an incidental point, we remind the reader that a reversible computer 
can simulate any physical process, and remain close to equilibrium in this 
simulation. This includes the simulation of scenarios leading to the origin of 
life, and biological evolution, processes which are frequently assumed to 
require serious departures from thermal equilibrium. The reader may object 
that simulation on a computer is not equivalent to the real physical process. 
Nevertheless, the two processes are equally effective in the development of 
organization, and both processes require preliminary equipment to be 
initiated. In one case, the proper soup of organic materials is required; in 
the other, a computer structure with a program representing the initial state 
and the dynamics of the system. It's not clear that this is a very fundamental 
distinction. 

3. DISSIPATIONLESS BALLISTIC CLASSICAL 
COMPUTATION 

We can now go on and ask: Are there dissipationless reversible 
computers? This would be a computer where particles are initially launched 
with a kinetic energy, which is then used to continue the computation. The 
Fredkin billiard ball collision proposal, mentioned in the preceding section, 
represents one possible approach. Dissipationless computation presents new 
problems, not present in a system with friction. First of all, in the absence of 
dissipation, we have a permanent memory of the e x ac t  initial conditions. If 
we have a many-particle system, each particle must be started with its ideal 
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velocity; we have no tolerance for deviations in path angle. Thus if we want 
to invoke tracks, pipes, or some other guiding machinery, it would be best to 
assume that these allow only a single degree of freedom, coupled to the 
forward motion of the computer,  and allow no additional lateral freedom. 
Quite aside from questions motivated by sensitivity to initial condition, we 
would be pushed toward the same one-dimensional idealization by the need 
to avoid construction errors in the guidance machinery, e.g., in the cross 
section of pipes. 

The second reason for the delicacy of dissipationless systems is more 
fundamental.  If we assume that the information-bearing degrees of freedom 
are imbedded in a physical structure, with a great many other degrees of 
freedom, is it reasonable to assume that the extraneous degrees of freedom 
remain innocuous and do not pick up any of the computational energy? If 
we have solid pipes, or mirrors, guiding information-bearing particles, is it 
reasonable to assume that the phonons in the guiding structure are uncou- 
pled to the motion of the information-bearing particle? The answer to that 
is undoubtedly negative, but, to make some progress, we will cheat, and 
assume it is positive. A better alternative would be a computer which 
involves few or no extraneous degrees of freedom for the guiding machinery. 
I do not know whether such an invention is possible, and certainly have not 
seen it described. Thus we are not in a position to demonstrate that the 
universe permits the realization of a dissipationless computation, but only 
want to argue that such processes are not contrary to the laws of classical 

physics. 
We will not try to construct a completely dissipationless computer, but 

will allow ourselves a brake, to be thrown at the end of the computation, to 
halt the process, and prevent it from rebounding. It is not clear that this is 
necessary: possibly one could have a way of storing the kinetic energy 
needed for the progress of the computation, in a fly wheel. Thus we will 
only argue that there is no energy dissipation requirement proportional to the 
number of steps in the computation. 

What are the modifications required in the BFT machine by the 
absence of friction? Let us continue to assume that the information-bearing 
particles are locked together. (An alternative possibility would depend on 
synchronization resulting from perfect particle velocities, combined with a 
guiding structure laid out so as to equalize all delays between successive 
gates. This would return us to the Fredkin billiard ball collision proposal, of 
the preceding section, or some still undescribed alternative to Figure 2.) If 
the particles are all locked to a comb, but follow different paths, which are 
not all parallel to the motion of the comb, then the velocity, and the kinetic 
energy of a particular particle, cannot be constant. That is no problem, and 
can be handled either by letting the total comb velocity vary, in such a way 
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that the total kinetic energy is constant, or else by additional offsetting 
energy storage schemes. The switching apparatus of Figure 2 must be left in 
a stationary position while it is controlling the motion of particles. The 
switching apparatus cannot be left with excess kinetic energy once it is 
brought to the correct position for crossed tracks. (This kind of problem is 
avoided in the colliding billiard ball scheme of Fredkin, where the only 
degrees of freedom with kinetic energy are those of the information-bearing 
particles.) Thus the parts of the switch must approach their final position 
with zero velocity, as is the case for a typical classical turning point. This 
can be done by an intentional modulation of the velocity of the whole 
locked together computational apparatus. It can also be done at constant 
computational velocity, if the information-bearing particles are really cir- 
cular in the cross-sectional shape that controls the pipe opening. Actually 
the circular shape, or smooth curvature, need only be present near the 
maximal portions of the cross section. Furthermore the variation in stored 
spring energy must dominate over the kinetic energy variation, i.e., we are 
driving the spring loaded switch below its resonance frequency. Thus the 
excess kinetic energy gained by the switch parts, when the ball first enters, 
will be used up in subsequent compression of the spring. If we are 
squeamish about velocity discontinuities, then we will also have to be 
careful about contours when the information-bearing particle first enters the 
split section, and equivalently when it leaves. Continuous velocity changes 
can be achieved by giving the leading and trailing edge of the particle the 
shape of a hollow ground knife edge. This, however, requires an exact 
control of lateral placements, when the information-beating particle first 
starts inducing a separation between the split pipes. 

When the particles emerge from the Turing head, and are deposited on 
the tape, they must be left at an exact position, and with no residual kinetic 
energy. This can be accomplished, for example, by modulating the computa- 
tional velocity, and letting it go through zero at the time when information- 
bearing particles are released at the tape, and also when they are picked up. 
Alternatively, the particle can be released with its full velocity, and its 
kinetic energy then delivered to a storage system, e.g., a particle in a circular 
track or a flywheel. The kinetic energy delivered to this storage system is 
passed on, later, to another particle being picked up from the tape. By 
invoking the complementary logic, mentioned earlier, we can insure that the 
stored kinetic energy is independent of the information content. Again we 
note that no tolerances are allowed; the device storing the kinetic energy 
must be at the exact position, at the required time, and the mass of the 
information particle related exactly to the relevant parameter of the flywheel 
storage system. The device structure which locks the information-bearing 
particles together, e.g., the comb structure described in the Appendix, causes 
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further tolerance problems of this kind. We want this structure to control 
the particle position exactly, without looseness. At the same time when the 
structure is inserted into, or otherwise grabs hold, of a particle on the tape, 
this must be a frictionless process, despite the exact fit. It is conceivable that 
our stated requirements for perfect machinery are the result of inadequate 
ingenuity, and that it is not really a fundamental aspect of dissipationless 
ballistic computing. 

The dissipationless machine has not been described in the same detail, 
nor is it really understood at the same level of detail, as the original viscous 
BFT machine. We can only assert that we see no real problems, as long as 
we demand consistency with the laws of mechanics, rather than physical 
realizability. 

4. Q U A N T U M  M E C H A N I C A L  BALLISTIC C O M P U T A T I O N  

Is there a quantum mechanical version of the ballistic classical com- 
puter described above? (Since it was already beset by enough problems, we 
may well wonder whether that question is worth asking.) One can, of course, 
at tempt to describe a Hamiltonian, which characterizes the computational 
advances of Figure 3, without any at tempt to picture a detailed physical 
mechanism. This is the strategy of Benioff (1980), who describes a machine 
which he characterizes: " . . .  the model Hamiltonians constructed here are 
very complex. As a result it is difficult to conceive how one would actually 
build such a machine." Benioff also invokes an unusual Hamiltonian, in 
which the usual kinetic energy term, V 2/2m, is replaced by v. ~7 where v 
is a fixed velocity. Such a system, which allows only one velocity, will not 
permit the computation to be reversed. It is not clear, at least to this author, 
how such a machine is returned to its initial state for subsequent reuse. The 
refined description, however, of BeniofFs (1982) discussion, or some further 
modification of that, may well provide a satisfactory dissipationless quan- 
tum mechanical Turing machine. In the meantime, we will here continue to 
describe our attempts to find one, more or less along the lines of the BFT 
machine. 

If one asks for a more specific description of the apparatus, and tries to 
invoke the kind of machinery sketched for ballistic dissipationless computa- 
tion, in the preceding section, we run into severe problems. The uncertainty 
principle will prevent the exact positioning of kinetic energy storage devices 
with zero initial momentum.  More generally: As long as we have indepen- 
dent degrees of freedom of that sort rattling around, including all the stored 
information-bearing particles along the Turing machine, how can we be 
certain we have left them in their ground state, without excess energy, when 
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they are not in active use? There may be a solution to all this; I do not have 
it. Fredkin's colliding billiard ball computer does avoid the extra rattling 
parts. As stated earlier, however, it needs to be supplemented by additional 
invention, to turn it into a complete computer, and also, of course, into a 
quantum mechanical device not dependent on the exact specification of 
both momentum and position, for independent particles. 

Let us now be optimistic and assume that one of the approaches 
discussed above is possible, and permits a dissipationless quantum mechani- 
cal progression along the states of a chain, as shown in Figure 3. This still 
leaves some problems to be discussed. Figure 3 may suggest motion along a 
periodic lattice, translationally invariant except for the existence of termina- 
tions. This, however, would be an inappropriate interpretation. The succes- 
sive states in the computation are not equivalent; they are distinguishable 
through their information content. We know, however, that the transmission 
coefficient of a long one-dimensional chain, which is complicated, and not 
periodic, tends to go to zero exponentially with the length of the chain 
(Anderson etal., 1980; Andereck and Abrahams, 1980; Abrahams and 
Stephen, 1980; Azbel 1980a, 1980b, 1980c). Thus we note that dissipation- 
less quantum mechanical computation, at fixed internal kinetic energy, need 
not correspond to a fixed computational velocity. The lowered computa- 
tional velocity results from the internal reflections. A small transmission 
coefficient, for the whole computation, viewed as one event, requires many 
successive attempts to achieve a completed computation. The exponential 
rise of the time required, with the length of the computation, would-- in  any 
serious practical sense--render many computations impossible. Possibly the 
effect of the reflections we have discussed, which depend predictably on the 
information being handled, can be offset by additional devices, analogous to 
antireflection coating on lenses, or tuning stubs in electrical transmission 
lines. Such matching devices will work perfectly only at a particular energy. 
Furthermore, it is far from clear what the nature of such devices would have 
to be. If we need a single such device or action, for each step of the Turing 
machine, and if its choice depends on the totality of events taking place in 
that step, that may be a rather difficult recipe. As Bennett asks, if the way of 
handling the computational step depends on all of its details, are we 
accomplishing anything? Such a question would disappear if the matching 
can be accomplished more locally, e.g., by suitable machinery at each 

Fredkin gate. 
If we go on and, additionally, allow for some imperfections in our 

machinery, then the existence of an exponentially decreasing transmission 
coefficient seems inevitable. If we also allow for inelastic scattering events, 
however, we restrict the range of the computation over which coherent 
internal reflections can be effective. Taking our cue once again from the 
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theory of electronic transport in disordered potentials, we can then expect a 
mobility, and can conduct computation at a velocity proportional to an 
applied force, and with accompanying energy dissipation (Chaudhari and 
Habermeier, 1980; Giordano, 1981; Thouless, 1981). 

5. C O N C L U D I N G  C O M M E N T S  

Computers which have viscosity, but can dissipate arbitrarily little 
energy per step, in slow computing, are well understood. Dissipationless 
computers are, at least to the extent they are understood today, more 
pathological devices. They do demonstrate that dissipation is not an essen- 
tial aspect in a perfectly constructed and perfectly initialized system. Quan- 
tum restrictions are still not really understood. Uncritical applications of the 
uncertainty principle, or of quantum channel capacity results, are unlikely 
to yield valid information about energy dissipation requirements. 

There is another general observation that seems appropriate. We, and 
others, in discussing fundamental computer limitations, have stressed the 
need to consider schemes which can be made part of a Turing machine, or 
else have access to unlimited storage in some other way. This requirement 
arises because a finite machine has a limited number of programs it can 
execute, all of which can, in principle, be foreseen by the designer. In other 
words, a finite machine looks too much like a table lookup mechanism to 
seem interesting. But our emphasis on machines of unlimited size seems 
really very unreasonable, when we know (or at least strongly suspect) that 
nature will not allow that. What we need here is a mode of analysis which 
comes closer to the real world, where finite machines can do a great many 
tasks not understood in advance by their designer; finite machines are really 
more than table lookup devices. We need to characterize finite machines by 
a figure of merit which characterizes the universe of calculations they can do 
(including, perhaps, the rate at which these can be carried out), compared to 
the complexity of the machine's own structure. 

6. APPENDIX: 

D E S C R I P T I O N  OF T H R E E - D I M E N S I O N A L  A R R A N G E M E N T  
FOR S Y N C H R O N I Z A T I O N  OF VARIABLES IN 

B E N N E T Y -  F R E D K I N - T U R I N G  

Let the basic plane of operation, in which the information-bearing 
particles are moving, be the x - y  plane. We will invoke occasional excur- 
sions in the z direction to solve the crossover problem. For further clarity, 
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let us assume that there are a group of Fredkin gates lined up along x =0 ,  
additional gates lined up along x = 1,2,3,4 . . . . .  Thus, the particles moving 
from one Fredkin gate to the next must move along the x direction. 
Additional motion in the y direction may also be necessary since a given 
gate at, say, x =0 ,  y = 0  may provide input for a gate at x = 1, y = 17. Now, 
in this motion along the y direction, paths have to cross. How do we handle 
that? 

The information-bearing particles (or "bails") have a comb of rods 
inserted into their structure, and this controls their progress in the x 
direction. The teeth of the comb point in the z direction, and are separated 
from each other along the y direction. The comb will be at a given value of x 
at a specific time. Motion of the comb along x represents the forward (or 
backward) evolution of the computation. The comb is made up of many 
small teeth or rods, such that a given information-bearing particle is 
engaged, at any one time, by a number of these rods. For a particle in its 
normal position, taken to be at z = 0, in the plane of the Fredkin gates, there 
will, in fact, be two combs coupling to a particle. The tubes, guides, or 
tracks do not surround the information-bearing particle completely, and 
permit the teeth to contact the particle, via a notch cut into the particle. One 
comb comes from positive values of z, the other from negative values of z. 
These two combs will move together and their combined motion represents 
one degree of freedom. We will assume that the crossovers are handled 
between successive Fredkin gates, and not near the integral values of x. The 
crossovers are handled with one track deviating out of z =0,  and going 
above that plane and the other track going below that plane. In that process 
we will assume that for the particle moving up in z, the comb guides coming 
from negative values of the z will lose contact with the particle and the 
particle will only be guided by the comb coming from positive values of z. 
That should be enough to keep the particle moving. Similarly the particle 
which goes below the z = 0  plane will continue to make contact only with 
the comb coming from negative values of z. The teeth can be considered to 
be pushed toward the z = 0 plane by springs, so that if the particle is taken 
out of the z = 0  plane we do work against these springs. That, in turn, will 
be regained when the particle comes back toward zero or when the particle 
leaves a given guiding tooth. The comb teeth should be pointed, as they 
actually are in a real comb. Thus a particle which is pushed up against a 
nonelevated tooth will automatically raise that tooth. The particles, during 
their departure from the z = 0  plane, will always be guided by at least one of 
the two sets of combs. This scheme requires compression and decompres- 
sion of the springs, behind the teeth, but the energy dissipation can be made 
arbitrarily small, by sufficiently slow motion. 

Let us now view our overall logic scheme as a complementary one, in 
which all logic stages are duplicated, except that in the duplication the "0"  
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is replaced by a "1" and visa versa. In such a scheme we can be sure that 
along two complementary crossover tracks one, and only one, set of comb 
teeth will be pushed against their springs. Thus the total energy required by 
the springs will be independent of the information content, and we can then 
provide balancing forces along the remainder of the motion, so that the total 
stored energy remains constant, and independent of the springs being 
compressed. 
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